Correction to: effects of dietary gelatin hydrolysates on bone mineral density in magnesium-deficient rats
نویسندگان
چکیده
BACKGROUND The major types of commercially available gelatin hydrolysates are prepared from mammals or fish. Dietary gelatin hydrolysates from mammals were reported to improve bone mineral density (BMD) in some animal models. In contrast, there is limited study showing the effects of dietary gelatin hydrolysates from fish on BMD. The quantity and structure of peptides in the plasma after oral administration of gelatin hydrolysates depend on the gelatin source, which suggests that the biological activity of gelatin hydrolysates depend on the gelatin source. This study examined the effects of fish-derived gelatin hydrolysate (FGH) or porcine-derived gelatin hydrolysate (PGH) intake on BMD and intrinsic biomechanical properties in magnesium (Mg)-deficient rats as a model showing the decrease in both BMD and intrinsic biomechanical properties. METHODS Four-week-old male Wistar rats were assigned into four groups: a normal group was fed a normal diet (48 mg Mg/100 g diet), a Mg-deficient (MgD) group was fed a MgD diet (7 mg Mg/100 g diet), a FGH group was fed a MgD + FGH diet (5% FGH), and a PGH group was fed a MgD + PGH diet (5% PGH) for 8 weeks. At the end of the study, BMD and intrinsic biomechanical properties of the femur were measured. RESULTS The MgD group showed significantly lower Young's modulus, an intrinsic biomechanical property, and trabecular BMD of the femur than the normal group; however, the MgD diet did not affect cortical BMD and cortical thickness. Both the FGH and the PGH groups showed significantly higher cortical thickness and ultimate displacement of the femur than the normal group, but neither type of gelatin hydrolysate affected Young's modulus. Furthermore, the FGH group, but not the PGH group, showed significantly higher trabecular BMD than the MgD group. CONCLUSIONS This study indicates that FGH and PGH increase cortical thickness but only FGH prevents the decrease in trabecular BMD seen in Mg-deficient rats, while neither type of gelatin hydrolysate affect intrinsic biomechanical properties.
منابع مشابه
Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch
BACKGROUND Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistan...
متن کاملDietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats.
We investigated the effects of dietary iron deficiency on bone metabolism by measuring markers of bone turnover in rats. Twelve 3-week-old male Wistar-strain rats were fed a control diet or an iron-deficient diet for 4 weeks. Dietary iron deficiency decreased hemoglobin concentration and increased heart weight. Serum osteocalcin concentration, bone mineral content, bone mineral density, and mec...
متن کاملIngestion of gelatin has differential effect on bone mineral density and body weight in protein undernutrition.
Malnutrition, particularly protein undernutrition, contributes to the occurrence of osteoporotic fracture by lowering bone mass. In this study, the effects of dietary protein on bone mineral density and body weight in protein undernutrition were compared between gelatin and milk casein. When mice were fed for 10 wk with a low protein diet containing 10(%) casein or 6% casein +4% gelatin, there ...
متن کاملMagnesium deficiency: effect on bone mineral density in the mouse appendicular skeleton
BACKGROUND Dietary magnesium (Mg) deficiency in the mouse perturbs bone and mineral homeostasis. The objective of the present study was to evaluate bone mineral density of the femur in control and Mg-deficient mice. METHODS BALB/c mice aged 28 days at study initiation were maintained on a normal or Mg deficient (0.0002% Mg) diet, and at time points 0, 2, 4 or 6 weeks bones were harvested for ...
متن کاملDietary Pseudopurpurin Effects on Bone Mineral Density and Bone Geometry Architecture in Rats
The objective of our study was to evaluate whether feeding pseudopurpurin affects bone mineral density and bone geometry architecture in rats. Pseudopurpurin was extracted, analyzed and purified using an HLPC-ESI-MS. Rats were given 0% and 0.5% pseudopurpurin powder in their diet. Femurs of rats were examined at 0.5, 1 and 2 months after pseudopurpurin feeding. Compared with rats in the group 0...
متن کامل